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Abstract Prior work has demonstrated significant phenotypic benefits to female
promiscuity in the arctiid moth Utetheisa ornatrix. We were interested in
determining whether U. ornatrix females also derive genetic benefits from mating
multiply. We specifically tested whether, by mating with several males, females are
able to exploit postcopulatory mechanisms that decrease the risk of fertilization by
incompatible sperm. We show evidence that U. ornatrix females are not taking
multiple mates as fertilization insurance because: (1) females that mate once are as
fertile as those that mate three times; and (2) females that take three different mates
are no more fertile than those that mate three times with the same male.
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Introduction

The intricacies of mating systems of animals in a wide variety of taxa have been
revealed in recent years through detailed studies using modern molecular techniques
that were previously unavailable (Hughes 1998; Coltman et al. 1999; Wilmer et al.
2000). Many of these studies have produced a similar finding concerning female

J Insect Behav (2008) 21:213–221
DOI 10.1007/s10905-008-9121-8

A. L. Bezzerides (*)
Department of Biological Sciences, University of Wisconsin-Barron County, 1800 College Drive,
Rice Lake, WI 54868, USA
e-mail: alexander.bezzerides@uwc.edu

V. K. Iyengar
Department of Biology, Villanova University, Villanova, PA 19085, USA

T. Eisner
Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA



reproductive behavior and sexual selection. Namely, it has come to light in many
species that females take more mates than previously realized (Arnqvist and Nilsson
2000; Birkhead and Moller 1998). The models and hypotheses presented to address
this phenomenon can be broadly lumped into two categories. Some have argued that
multiple matings may help females to accrue direct, material benefits such as an
adequate sperm supply (Drnevich et al. 2001), defensive chemicals (González et al.
1999), or nutrient donations and/or oviposition stimulants (Wagner et al. 2001).
Others have suggested that the benefits are more genetically based, allowing females
to fertilize their eggs with more compatible sperm or with sperm from superior males
(Fox and Rauter 2003; Jennions and Petrie 2000; Zeh and Zeh 1996, 1997). These
hypotheses have gained traction in recent years with an increasing body of evidence
suggesting that females may reap both material benefits (Schwartz and Peterson
2006) and/or genetic benefits (Ivy and Sakaluk 2005) via polyandry. Our primary
goal with the current study is to address potential genetic benefits (specifically the
increased likelihood of fertilization by compatible sperm) gained through promis-
cuity in an arctiid moth.

Female Utetheisa ornatrix (henceforth called U. ornatrix) are highly promiscu-
ous, taking an average of 11 mates of the course of the short 3–4 week adult life
(Bezzerides and Eisner 2002). Promiscuity is likely tied to the transmission of
nuptial gifts by the male (Eisner and Meinwald 1995; Bezzerides et al. 2005).
Spermatophore of U. ornatrix are known to contain three commodities: sperm,
pyrrolizidine alkaloid (PA), and nutrient (Rossini et al. 2001). The PAs are
sequestered by both sexes from their larval food plants (legumes of the genus
Crotalaria) and protect the moth at all life stages (Eisner and Meinwald 1987; Eisner
and Eisner 1991; Hare and Eisner 1993; Dussourd et al. 1988; Eisner et al. 2000).
Females endow their eggs with the defensive chemicals and can replenish their PA
supply by mating (González et al. 1999). Previous work has shown that the female
can protect individual eggs with the alkaloidal donations of multiple males
(Bezzerides and Eisner 2002). Multiple mating has also been shown to be valuable
to females in terms of increased egg production, with the fecundity of a female
increasing by up to 15% with each mating (LaMunyon 1997). An open question
concerned the effect of multiple mating on the fertility of the female. Specifically, we
wanted to know if one mating provides an U. ornatrix female with a sufficient
amount of sperm to fertilize a lifetime’s supply of eggs. In addition, we wanted to
know whether or not multiple mating by females increases the probability that their
eggs will be fertilized by compatible sperm. Lastly, we were interested in
determining if U. ornatrix females ensure the receipt of a diversity of sperm via
precopulatory discrimination against males with whom they have already mated.

In this study, we examined the benefits of multiple mating in U. ornatrix by
dividing females into four classes and subjecting each class to a different series of
mating treatments. One group was never exposed to a male. A second group of
females mated with only one virgin male. The third group mated with the same
male three times and the fourth group mated with three different males. By
determining the fecundity, fertility, and longevity of all of the females in the study,
we were able to better understand the benefits of promiscuity based on the number
of copulations and the number of different partners taken by females in the four
treatment groups.
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Materials and Methods

Laboratory-Reared U. ornatrix

For years we have maintained an U. ornatrix colony descended from individuals
collected from the Archbold Biological Station in Lake Placid, Highlands County,
Florida. The moths are reared on two types of pinto-bean based diets. The diets are
identical, except that in one, [(+) diet], 10% of the pinto beans are replaced by seeds
of the plant Crotalaria spectabilis, a natural food plant of U. ornatrix (Bogner and
Eisner 1991). Moths reared on this diet contain monocrotaline, the principal PA
found in C. spectabilis, at levels [0.6 mg (Bogner and Eisner 1992)] closely
approximating those found in animals collected from the field [0.7 mg (Conner et al.
1990)]. Moths raised on the diet that is not supplemented with C. spectabilis seeds
[(−) diet] are consequently PA-free (Conner et al. 1981).

Matings

Two- to four-day old virgin males and females were randomly selected from the
colony and weighed. Individuals were considered size-matched if they differed by less
than 7 mg. One group of females consisted of four size-matched individuals. Each
group consisted of a female that was never exposed to a male (NM, for non-mated), a
female that mated one time only (OM, for once-mated), a female that mated with the
same male three times (3TS, for three-times-same), and a female that mated with three
separate males (3TD, for three-times-different). Each of the first males for groups OM,
3TS, and 3TD was a size-matched virgin male. The second male for the 3TD group
had already mated once to control for mating status. Likewise, the third male for the
3TD group had mated twice. 26 groups were set up in this manner.

Individuals were paired in small humidified cylindrical containers (0.35 l) in the late
afternoon and checked at 6 h intervals for verification of mating [mating lasts 10–12 h in
U. ornatrix (LaMunyon and Eisner 1994)]. The containers were lined with wax paper,
a substrate on which females readily oviposit. After uncoupling, the male was
removed and the female was allowed to remain in the container. Males and females
that were slated to mate more than once were given one night between matings.

Fecundity

Once a day eggs were removed from the containers. Eggs laid on the wax paper were
set aside in large petri dishes for subsequent determination of fertility. Eggs found
elsewhere fell into one of three categories. Some were found loose on the container
floor, others were stuck to the cotton wick used to humidify the containers, others were
stuck in the netting that served as the lid of the container. Fecundity was defined as the
total of all eggs laid by a female over her lifetime, both on and off the wax paper.

Fertility

All eggs laid off the wax paper were included in the analysis of fecundity but
excluded from the analysis of fertility. Eggs hatch most reliably from the wax paper.
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Thus, it was decided that they should be included in the determination of fertility
only when laid on that surface. Eggs laid on the wax paper accounted for 83.4%
(±2.0%) of the eggs for the females that took at least one mate. In the case of the NM
females, eggs laid on the wax paper accounted for 57.1% (±4.8%) of the total eggs
laid.

Total fertility was defined as the percent of eggs laid on the wax paper that
hatched within 1 week. Seven days after eggs were laid, counted, and set aside, they
were assessed for hatching success. Unhatched eggs fell into one of two categories.
They were either yellow and wrinkled with no sign of a developing larva inside, or
black with the remnants of a larva still present in the capsule. For determination of
the percentage of eggs fertilized, the number of eggs that had a developing larva
(regardless of whether or not it eventually emerged) was divided by the number of
eggs laid. The percentage of eggs hatched was calculated by dividing the number of
emerged larvae by the number of eggs laid. Consequently, the difference between the
two categories can be interpreted as the percentage of eggs that were fertilized but in
which larval development arrested before emergence.

Longevity

Longevity was defined as the number of days the female moth was alive after the
first mating or, for NM females, it was defined as the number of days they were alive
after being confined alone. NM females were confined alone at the same time
females in the other groups were paired with their first mate.

Mate Choice Trials

Two- to four-day old (+) virgin females were mated with 2–4 day old (+) virgin
males. After the mating, the male was removed from the mating chamber. Two days
later the females were confined with the male they had mated with previously and a
size-matched second male. The “new” male had also mated once prior [to a separate
(+) female] so that the two males were as phenotypically similar as possible. A
portion of the forewings of the two males was colored with a marker in order to
identify the mating male. The same experiment was replicated using all (−)
individuals.

Statistics

The only groups included in the statistical analyses were those in which an accurate
measure could be made of fecundity, fertility, and longevity. One 3TS female laid
only a single egg on the wax paper over the course of her lifetime. Given that we
based fertility solely upon eggs laid on the wax paper, this female, along with the
three other females in her group, was eliminated from the study. Consequently, 25
groups of four females were included in the statistical analyses. Results from the mate
choice trials were analyzed with a chi-square test. When data was normally distributed
(Shapiro–Wilk’s test, P>0.05), with equal variances (Levene’s test, P>0.05),
comparisons were made with a randomized-blocks ANOVA. All other data was
analyzed using a randomized-blocks Kruskal–Wallis ANOVA (henceforth known as
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KW ANOVA). In the case of the analysis of longevity, post-hoc comparisons were
necessary and the alpha level for significance was adjusted to 0.0083 following
standard Bonferroni adjustments. All reported P-values are two-tailed. All values of
fecundity, fertility, and longevity are expressed as mean±SE.

Results

Fecundity

There were no significant differences in the fecundity of the females among the three
groups that took at least one mate (ANOVA: F2,24=0.61, P=0.55, Fig. 1).

Fertility

Fertility was high (>89%) in all groups that took at least one mate. Comparisons
between the OM, 3TS, and 3TD groups yielded no significant differences when
analyzing either the fraction of eggs that were fertilized (KW ANOVA: H2,24=0.03,
P=0.99) or the fraction of eggs that eventually hatched (KW ANOVA: H2,24=2.99,
P=0.22, Fig. 2).

Longevity

There were significant differences in the longevity of females in the four groups
(KW ANOVA: H3,24=26.29, P<0.0001). Multiple comparisons showed the NM
group to differ from every other group (P<0.0001 for each comparison, Fig. 3).

Mate Choice Trials

Females failed to differentiate between a previous partner and a new male. Out of 50
trials, (+) females mated 29 times with their previous (+) partner and 21 times with the
new (+) male. This trend was not significant (χ2=1.28, df=1, P=0.26). Also, out of 50
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trials, (−) females mated 20 times with their previous (−) partner and 30 times with the
new (−) partner. Again, this trend was not significant (χ2=2.0, df=1, P=0.16).

Discussion

It does not appear as though U. ornatrix females are taking multiple mates as a
means of acquiring adequate quantities of sperm. There were no significant
differences in the hatching success of eggs laid by once-mated and thrice-mated
females. Given the overall high degree of fertility seen in the study, it seems most
unlikely that a simple lack of sperm provides the explanation behind the average 11
mates taken by female U. ornatrix. In addition, females mated to the same male three
times were equally fertile as those that acquired a diversity of sperm from three
different mates. Consequently, it comes as no surprise that U. ornatrix females have
not evolved mechanisms that allow for recognition of and discrimination against
previous partners. This stands in contrast to examples of previous-partner
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discrimination that have been demonstrated in other insect such as crickets (Bateman
1998) and flies (Hosken et al. 2003).

Interestingly, we also found no differences in the fecundity of females in each of the
experimental categories where they took at least one mate. This contradicts previous
results in which fecundity was found to increase by 15% with each mating (LaMunyon
1997). These prior experiments, however, were subject to the common caveat that in
each case the successive males presented to the female were virginal. Thus, with each
mating, the female could be expected to receive a spermatophore that represented a
significant investment on the part of the male. Males require 6–7 days between
matings in order to pass a full-size spermatophore to a second mate (LaMunyon and
Eisner 1994). The explanation for the discrepancy between the previous and current
results lies in the fact that in this study the second and third males presented to a female
had mated previously. Males in this study were given only a single night between
matings. Consequently, they were undoubtedly passing sub-size spermatophores to their
second and third mates. While it remains untested if sub-size spermatophores contain a
smaller quantity of sperm than spermatophores from virgin males (which could
potentially affect female fertility), they undoubtedly contain less nutrient. For the
female, the small boost of nutrient received at the second and third mating was not
enough to elevate her fecundity beyond that of a female receiving just one large
spermatophore. This finding suggests that females may have to accept many small
nuptial gifts in order to receive enough nutrient to experience a significant increase in
fecundity. In addition, in terms of phenotypic benefits, these results emphasize the
importance of mating with either virgin or well-rested males. Whether or not females
discriminate against previously mated males is an issue worthy of investigation.

We believe that this experimental design is a closer approximation to natural
conditions than the repeated presentation of virgin males to a female. While we do not
have data on male mating history in the field, given that the sex ratio is equal
(unpublished data, based on collections from five locations in Florida), and that
females mate on average 11 times (equivalent to mating every other day during their
adult life), it seems highly unlikely that a female would encounter a virgin male for
every mating. Years of laboratory observations have shown males to be willing to take
a mate on consecutive nights. In one recent experiment, when given the opportunity,
males were shown to mate on as many as ten consecutive nights (Sarver 2002).

There were two infertile females in the group that took just one mate. They should
not be overlooked, in that their complete infertility may explain at least a degree of
the multiple mating seen in U. ornatrix. Females that take multiple mates may avoid
inbreeding, which has been presented as a possible genetic benefit to polyandry
(Stockley et al. 1993; Brooker et al. 1990). Females may, on occasion, encounter and
mate with a close relative and, given no other choice of sperm, lay infertile eggs due
to the negative effects of homozygosity for deleterious recessive alleles. Given that
the pairings in our experiments were conducted between randomly chosen
individuals, it is possible that some of the matings were between close relatives.
Thus, while it seems females are not remating simply to ensure an adequate quantity
of sperm, they may be taking multiple mates as a means of avoiding the costs of
inbreeding. This type of benefit to polyandry has been shown to occur in the field
cricket Gryllus bimaculatus (Tregenza and Wedell 2002) and is an issue worthy of
further attention.
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Also of note is the fact that there were significant differences found by comparing
females that never mated with those that took at least one mate. For example,
females that never mated lived significantly longer than females in all other groups.
This suggests there may be some type of cost incurred via mating, although its exact
mechanism remains unknown. It is possible that simply being exposed to males may
shorten the lifespan of the female, as is the case in Drosophila (Partridge et al. 1987;
Partridge and Fowler 1990). Other explanations include the physical energetic costs
in terms of egg production (Partridge et al. 1987) and the potential negative effects
of male derived proteins (Chapman et al. 1995; Wolfner 1997).

Acknowledgments This research was supported by National Institutes of Health grant AI02908 (T. E.)
and National Institutes of Mental Health training grant 5T32MH15793 (A. B.) We thank H. Kern Reeve,
Jerrold Meinwald, and David P. McCobb for comments on the manuscript and Julie Bezzerides for
technical assistance and help in maintaining the moth culture.

References

Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects.
Anim Behav 60:145–164

Bateman PW (1998) Mate preference for novel partners in the cricket Gryllus bimaculatus. Ecol Ent
23:473–475

Bezzerides A, Eisner T (2002) Apportionment of nuptial alkaloidal gifts by a multiply-mated female moth
(Utetheisa ornatrix): eggs individually receive alkaloid from more than one male source. Chemo-
ecology 12:213–218

Bezzerides A, Iyengar VK, Eisner T (2005) Corematal function in Utetheisa ornatrix: interpretation in the
light of data from field-collected males. Chemoecology 15:187–192

Birkhead TR, Moller AP (1998) Sperm competition and sexual selection. Academic, London
Bogner F, Eisner T (1991) Chemical basis of egg cannibalism in a caterpillar (Utetheisa ornatrix). J Chem

Ecol 17:2063–2075
Bogner F, Eisner T (1992) Chemical basis of pupal cannibalism in a caterpillar (Utetheisa ornatrix).

Experientia 48:97–102
Brooker MG, Rowley I, Adams M, Baverstock PR (1990) Promiscuity: an inbreeding avoidance

mechanism in a socially monogamous species? Behav Ecol Sociobiol 26:191–199
Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L (1995) Cost of mating in Drosophila

melanogaster females is mediated by male accessory gland products. Nature 373:241–244
Coltman DW, Bancroft DR, Robertson A, Smith JA, Clutton-Brock TH, Pemberton JM (1999) Male

reproductive success in a promiscuous mammal: behavioral estimates compared with genetic
paternity. Mol Ecol 8:1199–1209

Conner WE, Eisner T, Vander Meer RK, Guerrero A, Meinwald J (1981) Precopulatory sexual interaction
in an arctiid moth (Utetheisa ornatrix): role of a pheromone derived from dietary alkaloids. Behav
Ecol Sociobiol 9:227–235

Conner WE, Roach B, Benedict E, Meinwald J, Eisner T (1990) Courtship pheromone production and
body size as correlates of larval diet in males of the arctiid moth, Utetheisa ornatrix. J Chem Ecol
16:542–552

Drnevich JM, Papke RS, Rauser CL, Rutowski RL (2001) Material benefits from multiple mating in
female mealworm beetles (Tenebrio molitor L.). J Insect Behav 14:215–230

Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment
of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proc Natl Acad Sci U S A
85:5992–5996

Eisner T, Meinwald J (1987) Alkaloid-derived pheromone and sexual selection in Lepidoptera. In: Prestwich
GD, Blumquist GJ (eds) Pheromone biochemistry. Academic, Orlando, FL, USA, pp 251–269

Eisner T, Eisner M (1991) Unpalatability of the pyrrolizidine alkaloid containing moth, Utetheisa ornatrix,
and its larva, to wolf spiders. Psyche 98:111–118

Eisner T, Meinwald J (1995) The chemistry of sexual selection. Proc Natl Acad Sci U S A 92:50–55

220 J Insect Behav (2008) 21:213–221



Eisner T, Eisner M, Rossini C, Iyengar VK, Roach BL, Benedikt E, Meinwald J (2000) Chemical defense
against predation in an insect egg. Proc Natl Acad Sci U S A 97:1634–1639

Fox CW, Rauter CM (2003) Bet-hedging and the evolution of multiple mating. Ecol Evol Res 5:273–286
González A, Rossini C, Eisner M, Eisner T (1999) Sexually transmitted chemical defense in a moth

(Utetheisa ornatrix). Proc Natl Acad Sci USA 96:5570–5574
Hare JF, Eisner T (1993) Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatrix eggs: effects of

alkaloid concentration, oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia
96:9–18

Hosken DJ, Martin OY, Born J, Huber F (2003) Sexual conflict in Sepsis cynipsea: female reluctance,
fertility and mate choice. J Evol Biol 16:485–490

Hughes C (1998) Integrating molecular techniques with field methods in studies of social behavior: a
revolution results. Mol Ecol 79:383–399

Ivy TM, Sakaluk SK (2005) Polyandry promotes enhanced offspring survival in decorated crickets.
Evolution 59:152–159

Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev
Camb Philos Soc 75:21–64

LaMunyon CW (1997) Increased fecundity as a function of multiple mating, in an arctiid moth, Utetheisa
ornatrix. Ecol Entomol 22:69–73

LaMunyon CW, Eisner T (1994) Spermatophore size as determinant of paternity in an arctiid moth
(Utetheisa ornatrix). Proc Natl Acad Sci U S A 91:7081–7084

Partridge L, Fowler K (1990) Non-mating costs of exposure to males in female Drosophila melanogaster.
J Ins Physiol 36:419–425

Partridge L, Green A, Fowler K (1987) Effects of egg-production and of exposure to males on female
survival in Drosophila melanogaster. J Ins Physiol 10:745–749

Rossini C, González A, Eisner T (2001) Fate of an alkaloidal nuptial gift in the moth Utetheisa ornatrix:
systemic allocation for defense of self by the receiving female. J Ins Physiol 47:639–647

Sarver M (2002) Multiple mating and mate choice in an arctiid moth (Utetheisa ornatrix). Undergraduate
thesis, Cornell University, Ithaca, NY, USA

Schwartz SK, Peterson MA (2006) Strong material benefits and no longevity costs of multiple mating in
an extremely polyandrous leaf beetle, Chrysochus cobaltinus (Coleoptera: Chrosomelidae). Behav
Ecol 17:1004–1010

Stockley P, Searle JB, MacDonald DW, Jones CS (1993) Female multiple mating in the common shrew as
a strategy to reduce inbreeding. Proc R Soc Lond B 254:173–179

Tregenza T, Wedell N (2002) Polyandrous females avoid costs of inbreeding. Nature 415:71–73
Wagner WE, Kelley RJ, Tucker KR, Harper CJ (2001) Females receive a life-span benefit from male

ejaculates in a field cricket. Evolution 55:994–1001
Wilmer JW, Overall AJ, Pomeroy PP, Twiss SD, Amos W (2000) Patterns of paternal relatedness in British

grey seal colonies. Mol Ecol 9:283–292
Wolfner MF (1997) Tokens of love: functions and regulation of Drosophila male accessory gland

products. Ins Biochem Molec Biol 27:179–192
Zeh JA, Zeh DW (1996) The evolution of polyandry I: intragenomic conflict and genetic incompatibility.

Proc R Soc Lond B 263:1711–1717
Zeh JA, Zeh DW (1997) The evolution of polyandry II: post-copulatory defences against genetic

incompatibility. Proc R Soc Lond B 264:69–75

J Insect Behav (2008) 21:213–221 221


	Female Promiscuity Does Not Lead to Increased Fertility or Fecundity in an Arctiid Moth (Utetheisa ornatrix)
	Abstract
	Introduction
	Materials and Methods
	Laboratory-Reared U. ornatrix
	Matings
	Fecundity
	Fertility
	Longevity
	Mate Choice Trials
	Statistics

	Results
	Fecundity
	Fertility
	Longevity
	Mate Choice Trials

	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


